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BIASED SAMPLING; THE NONCENTRAL HYPERGEOMETRIC PROBABILITY DISTRIBUTION
by

Kenneth Ted Wallenius

0. Preliminaries: Suppose a lot of transistors is to be divided among

two purchasers. The lot is dichotomized by some quality criterion and
let us assume there are m high quality items and n other items of
tolerable quality. Purchaser G, who has contracted for r items,
suspects the supplier of favoring purchaser H with respect to the m
high quality items. He therefore decides to test the hypothesis that
the lot has been divided in a random manner against the alternative that
the supplier is biased in favor of purchaser H. Fisher's exact test

is appropriate to test the null hypothesis but in order to examine the
sensitivity of the test one must define and parametrize "degree of
bias" and obtain the non null distribution.

This report gives an intuitively appealing meaning to "degree of
bias"” when sampling from a finite population and obtains a distribution
herein called the noncentral hypergeometric probsbility distribution.
Various properties of the distribution are studied and asymptotic results

glven.
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SECTION 1
INTRODUCTION

1.1. The problem: Consider-a set S .of 4 elements vhich 1g dichotomized.
in some manner (say, by an observable characteristic) into subsets M
and N containing m and n =4 - m elements, respectively, and a
sampling mechanism which in some way selects a subset R of r elements
from S. ILet a be a realization of the random variable A denoting
the number of elements in R/ M. The results of such an experiment are

usually displayed in the form of a 2 X 2 contingency table such as

Table 1.1

where b=r-a

d=n-~-r+a

s=4-1
We wish to test the hypothesis that the sampling mechanism is random
against the alternative of "non-randomness". The notion of random

sampling from a finite population is well defined by

Definition 1.1: A sample, each of whose elements 1s drawn from a finite

population, is said to be a random sample if, at each draw, all elements

available for selection have an equal probability of being selected [8].

Under the hypothesis of randomness, the random variable A has a



hypergeometric distribution with Mhm m,n and r and hence Fisher's
"exact" test [6] is applicadble, i.e. the hypothesis of Wu is
accepted if and only if L <a <U where L and U are percentage
points of the appropriate hypergeometric distribution and depend on the
specified significance level . The alternative of "non-random
selection", however, is not well defined and hence discussions of the
sensitivity of the test are impossible. |

The purpose of this paper is to define non-random or biased selec-
tion in an intuitively appealing way and to parametrize the degree of
bias in order to obtain the non-null distribution of the test statistic
A and thereby determine operating characteristics of Fisher's "exact"
test.

In order to relate the model under consideration to other models
which yield data in the form of table 1.1, a brief survey of statistical
inference based on 2 X 2 tables is given below.

1.2, 2 X2 tebles: Several types of statistical investigations lead to
data displayable in the form of table 1.1. The particular "table"
obtained as the result of a random experiment can be compared to the set
of all realizable tables and thus provide a basis for inference. G. A.
Barnard [1] and E. 8. Pearson [9] have suggested classifying models by
the' number of fixed marginal totals. For example, if m, n, and r are
fixed then specifying a value A = a completely determines the other
entries so that, in this case, the sample space is one dimensional. If
r is not fixed, then the sample space 1s two dimensional eince one needs
to specify a value (A,B) = (a,b) to completely determine the table.

" These classifications, tougether with the names used by Barnard and

2
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Pearson are given belov in

I'lee 1.2
Fixed Classification
Parameters | Barnard Pearson Sample Space
m,n,r Independence I A m
trial n| <—> A
r
max{0, r-n)} < A < min (r,m)
m,n Comparative II A m
trisl B n | <—> (A,B)
0<A+B<m+nA<lm
£ Double III AT e

Z
0<A+B+C<$

Classically, the type II table is pertinent to the problem of com-

paring binomial parameters of 2 large populations from which random

samples of sizes m and n have been drawn while the type III table is

used in connection with testing a single large population for indepen-

dence of 2 characteristics based on a sample of size 4. 1In these two

cases, uniformly most powerful unbiased tests exist [7] and the

sensitivity of such tests are discussed, for example, in [2], [4], [11],

(12] and [14]. Type I tables are frequently employed in connection with



testing the hypothesis that two trestments, iy '?r,_ and T,, are iden-
tical in s0 far as profucing & "reaction” in & growp of § indivituals
Vhich bas been randoaly divided into two groups so tat m receive T,
and n=sf-m Teceive T,. Without further assusptions, the inferences
pertain only to the reactions of the .group being tested. Indeed, it may
be impossible to repeat the experiment if, for example, reaction implies
death or some otﬁar less abrupt change in susceptibiiity. Pearson [10]
considers a particular one-sided sensitivity analysis which, er,

is not ippl:lcable to the problem under consideration.
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. SECTION 2

BIASED SAMPLING

2.1. Definition and Paremetrization: Imagine e sampling mechanism

sequentially drawing a sample of size r from the set described in
section 1.1. Prior to the k' draw, k=l,...,r, let m(k) and n(k)
denote the number of elements remaining in sets M and N, respectively,
and let

11f k™ drev is an element of M

0 otherwise

X(k) =

r
A= ¥ ox(k),
k=1

Definition 2.1: The sampling mechanism is biased by 6, 0 <6 < o,

if and only if
P(X(x) =1) _ _m(k .
FIX(k) = 0] - enék; ) (2.1.1)

Remarks:

(1) Replacing P{X(k) = 0} by 1-P{X(k) = 1} we obtain

P{X(k) = 1) = m 19‘ (2.1.2)

m{k) + on(k

(2) If m(k) = n(k) then P(X(x) =0} = 6 P{X(k) = 1} so that
definition 2.1 has the intuitively desirable property that when the
remaining sets are equal in size, a bias of 6 1implies the sampling
mechanism is "6 times more likely" to select an element from N than

from M.



(3) 1If, at the Ko draw, m(k) = @ n(k) then

‘P(x(k) = 1) = P(X(k) = O} = 1/2, Hence, even though the sampling
mechanism is biased by 6, it is equally likely that the kth draw
will yield an element from M as an element from N when the elements

remaining in M are 6 times more numerous than those remaining in N.

0 if m(x) = 0

(4) 1im P(X(x) = 1} = 1 1f m(k) f O

g

Hence, for a large

degree of bias, the kth draw will be an element from set M provided

M has not been totally depleted.

(5) For 6 =1, definitions 2.1 and 1.1 coincide and clearly A has
a hypergeometric probability distribution with paremeters m, n, and r.
For this reason, the distribution of A for 0 < 6 < » will be called
noncentral hypergeometric with noncentrality parameter 6 and will be

denoted Pe(A =al.

2,2 Example: The main result of this paper was motivated by the
following genetics study [3]. A small rocky island located about 30
miles seaward of San Francisco Bay has supported a population of rabbits
for at least 100 years. This population affords the geneticist an ideal

nonlaboratory enviromment in which to study genetic fixation -J-'/ because

1/ Genetic fixation in a specified population is the tendency
for all but one allele to disappear from a particular gene
locus. [13]
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(a) Migration of enimals in nonexistent

(b) The population is greatly reduced each

sumer by the sparce supply of food y

(¢) Absence of predators
(d) The terrian facilitates trapping to the
extent that it is safe to assume that
sampling error is negligtble.
One of the loci under consideration is blood type. If no genetic
selectionz/ has taken place in the population, the number of generations
and the effective size of the breeding population can be used to deter-
mine the probability of fixation [5]. For the case in question, this
probability is approximately O0.04, Since the blood type locus was
observed to be polymorphic "_+/ a study was made tc determine if selection
was occuring in neonate survival. Neonates were captured, blood typed,

released and, after three months, the surviving animals were recaptured.

The data are given below in

Table 2.2
Survived Died Totals
Homozygotes 41 54 95
Heterozygotes 3l 86 120
Totals 15 140 215

2/ In 1961, for exemple, only 69 of 1200 neonate rabbits sur-
vived to an age where reproduction could occur.

;/ Changes in allele frequence between generations, other than
those attributable to random gamete and survival sampling,
are called selective changes. [13]

L&

More than one allele present in the population at the locus
in question; the opposite of genetic fixation. [13]



The hypothesis to be tested is that the sample of size 75 was drawn
randomly by "nature" from the population of size 215 against the
alternative that nature is biased (i.e., selection against one phenotype
or the other by the mechanism of death had occured). To test this
hypothesis, one simply applies Fisher's exact test at an appropriate

level using the values

95
= 120
75
= 4]

.

> 4 B g
]

Attempting to parametrize the alternative and obtain the power function
of the test motivated this paper. After the noncentral hypergeometric
distribution is obtained in section %, it will be applied in section 5

to a discussion of the power of the above test.
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SECTION 3
THE NONCENTRAL HYPERGEOMETRIC DISTRIBUTION

3.1. A First Expression: In this subsection we shall obtain an expres-

gion for Pe{A = a) by a straight forward enumeration method. This

form, although not mathematically appealing, will be used in a discussion

of bounds on Pe[A = a) and in certain asymptotic results in section k.

A simpler and more desirable expression will be obtained in subsection 3.2.
Using the notation introduced in Section 2, let X = {X(1),

X(2), ..., X(r)} be the random variable denoting the outcome of drawing

r elements from MUN and x = {x(1), x(2), ..., x(r)}] bYe a realization

on X. Then, using (2.1.2) and P{X = x} = P{X(1) = x(1)) x_

P(X(2) = x(2) | (1)) P(X(3) = X(3)] X(1), X(2)} . .;....
P(X(r) = x(r)]| x(1), x(2), .... X(r-1)} we obtain
( r
TT xtk) m(k,x) + [1-x(k)] 6 n(k,x
k=1 msk,xg + 6 nZk,xt
P{x = x} =ﬁ max {o,r-n} 5 { x(k) S min [r,m] (3-1.1)
k=1
\ 0 otherwise

where m(k,x) and n(k,x) are the number of elements i'emaining in M
and N respectively prior to the kth draw. Actually, m(k,x) and
n(k,x) depend only on x(1), x(2), ..., x(k-1); more precisely,

k-1

m(k,x) =m - ¥ x(J)
J=1 (3.1.2)

k-1
n(k,x) = n- ¥ [1-x(J)],
J=1

9



Then, PG{A =a) = Y P(X = x) vhere X(s) = {x { x(k) = a) (3.1.3)
xe X(a) - kel
Viewing the (:) elements in X(a) as binary numbers instead of

vectors for a moment, let us order X(a) by decreasing magnitude and

index the ordered set with J.

i-e. J = l [l’ l, s e e l, l, O’ o, ees’ ,0]
J=2 [l, 1’ L) l,ol, o, o'o,o]
r
5= ) (0) Oy +e- 0y 1, 1, .n 1]

where there are exactly a 1l's and r-a 0's. Denote the Jth x in

the ordering of X(a) by x By using (3.1.1) and (3.1.3) and obser-

5

ving that for each x, € X(a),

J

r

-{T {xd(k) m[(k,xJ) + [1 - xJ] e n (k, xJ)} = (m)a(n)r_aer'a where

(m)a = m(m-1) .... (m-a+l) we obtain

L (& r -1
PylA=a) = (m)a(n)r_&,ﬁer & J);l H [m(k:xJ) + 6n (k,xj)] .
(3.1.4)

As a verification, note that for 6 =1
r -1 -1
TT’ m(k,x,) + én (k,x,) = |(2)
k=1 J r

I'=8

(m), (n)
)

r

so that P{A=a]} = which is the central hypergeometric

case.

10
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3.2 A Preferred Expression: While (3.1.4k) is correct, it is a

nromplicated notational expression and leaves much to be desired. 'The
attack used in this subsection is that of partial difference equations.
In order to write down a partial difference equation we shall need to
modify the notation for Pe(A=a) in order to include reference to the

particular values of the parameters. Therefore, let us replace

Pe[Aaa] by Pb[a; m, n, r}.

Conditioning on X(1) we obtain

]

Pe[a; m, n, r)

E [Pe[a; m, n, r x(l)ﬂ

X(1) =1} P(X{1) = 1)

1]

Pe[a; m n, r

+ Pe{a; m, n, r| X(1) = 0} P{X(1) = 0}

= Pe[a-l; m-1, n, r'l]E£%§ + Pe(a; m, n-1, r-l]—Eg-

m+né °

Multiplying by m + né we obtain

m+n8) P, {a; m, n, r} =m P,{a-1; m-1, n, r-1} + n6 P (a; m, n-1, r-1}
] e e

(3.2.1)
with boundary conditions
) _[© a>o0
Pe{a, 0, n, r} = {l <0 (3.2.2)
r 0 <
Poia; m, 0, v} =47 o1 (3.2.3)
0 a>0
Pe[a’ m, n, 0} = {l a = o (3.20&)
(),
Pe[o; m n, r)= — (3.2.5)
(3 + 0, )

11



The first three boundary conditions need no explanation; the fourth is
obtained directly from (3.1.4).

Now (3.2.1) 1s a partial difference equation in four variables.
Often, by assuming the discrete varisbles are continuous and viewing the
partial difference equation as a partial differential equation, a simpli-
fication of the former will be suggested by the form of the solution of
the latter. Rewriting (3.2.1) as

m(Pe{a; m, n, r} - Pe{a-l; m-1, n, r-l}) + né (Pe[a; m, n, r} -

Pe{a; m, n-1 r-1}) = 0 and, by adding and subtracting appropriate

terms we obtain
m(Pe[a; m, n, r) - Péa; m-1, n, r})
+ m(Pe[a.; m-1, n, r} - Pe{a; m-1, n, r-1})
+ m(Pe{a; m-1, n, r-1) - Pe[a.-l; m-1, n, r-1})

+ n9 (Pla; my n, r} - Pe{a; m, n-1, r})

+ no(P{a; m, n-1, r} - P(a; m, n-1, r-1}) =0 (3.2.6)

which leads to
OP oP OP oP oP] _

m(aﬁ + & + & + 6n ﬁ + Fr = 0. (3-2.7)
Applying the method of characteristics,

4m _ & _ da _ dn _ dp

m m+nd m  n6 0 ° (3.2.8)
The first and third members of (3.2.8) yield

m=a+c (3.2.9)
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The first and fourth members of (3.2.8) yield

Inn=061nm+ 1ln C

A (3.2.10)

or n= 02m .

The first and second members of (3.2.8) yield

&r _ mtno

dm m

1+ eczme'l which has the solution:

]
]

m+02m9+c

3

m+n+ C3 . (3.2.11)

Hence, the solution of (3.2.7) will be some function of (cl, Cyo cj)

or, using (3.2.9), (3.2.10) and (3.2.11)
Pe{a.; m, n, r}) = F(m-a, nm'e, r-m-n) , (3.2.12)
This result suggests the following change of variables. Let

Pela; m, n, r} = Q(m+n-r, m-a, m, n). (3.2.13)

Then (3.2.1) DYecomes

(m+n8) Q (m+n-r, m-a,m,n) = m Q (m+n-r, m-a, m-1, n)

+ n6Q (m+n-r, m-a, m, n-l1) , (3.2.14)

Notice that the first two arguments, (m+n-r) and (m-a) are identical
in each term of (3.2.14) so that the number of variables has been re-

duced from four to two. 1In terms of Q, the boundary conditions

13



(3.2.2) through (3.2.5) become

Q(n"r, - a, O) n) = {-l : :g (302-15)
0 a<r
Q(m-r, m-a, m, 0) = (1 8 =1 (3.2.16)
Q(m+n, m-&, m) n) = {2 : zg (3.2'17)
(n)_
Q(m+n-r, my m, n) = (3.2.18)

m L)
(5 + n)r
Now, define

m+n-1 min%r,m) r a
Q(m+n-r, m-a, myn)x y

°m n(x;Y) =
’ r=0 a=max{o,r-n} (3.2.19)

Boundary conditions on 0m n(x,y) are easily obtained from (3.2.15) and
14

(3.2.16).
Bt r x"-1
99, nl*s¥) = rZ=O Qn-r, 0, 0, n) x' = X3 (3.2.20)

m-1 m
0, ol0¥) = T Qmr, mer, mo) Ky = UL (2.2)
’ r=0 -

Multiplying (3.2.19) by m+né and splitting off the term for r=0 we obtain
m+n-1  min{r,m)

(m+no) o n(x,y) = X Y (m+nd) Q (m»n-r,m-a,m,n)xrya + (m+no)
’ rzl a=max{o,r-n}

and, applying (3.2.14) to the right hand side, we obtain
m+n-1 min{r,m} r a

(mtng) ¢ (x,y)=m )y ) Q(m+n-r, m-a, m-1, n)x ¥y
’ r=1 a=max(0,r-n}

m+n-1 min{r,m} r a
+no Y ) Q(m+n-r, m-a, m, n-1)x" y
r=1 a=max{o,r-n}

+ (m + ng) | (3.2.22)

b



In the first term of the right hand side of (3.2.22), max{o, r-n} can
be replaced by max{l, r-n) since Q(m+n-r, m, m-l,n) = 0. Then, re-
placing a by a+l, we obtain
m m+§-l minlg-ln-1) Q(m-l+n-[r-1], m-1l-a, m-l,n)xr ya+l
r=1 a=max{0,r-1-n}
and, replacing r by r+l, we have
m-l+n-1 min{r,m-1} r+l a+l

m ) Q(m-l+n-r,m-l-a.m-1,n)x ~ y = = mxyd

(x,¥)
r=0 a=max(0,r-n) m-1,n *

(3.2.23)
In the second term of the right hand side of (3.2.22), min{r,m} can
be replaced by min{r-l, m} since Q(m+n-r, m-r, m, n-1) = 0. Then,

replacing r by r+l we obtain

m+n-1-1 min{r,m}
né Z Z Q(m+n-l-r,m-a,m,n-1)x
r=0 a=max{0,r-[n-1])

r+l _a
yo o= mox0, (%),

(3.2.24)

Substituting (3.2.23) and (3.2.24) into (3.2.22) yields

(m+no) @m,n (x,y) =mxy ¢ (x,y) +noex o (x,y) + (m+ng)

m-1,n ,n=1
(3.2.25)
Let ¥(&,n) be the generating function of ° n(x,y):
¢
© © m n
W = Y § e L (3.2.26)
m=0 m=0

Boundary conditions on ¥(&,n) are easily obtained from (3.2.20) and

(3.2.21) as
«© n
= a1
W(O) Tl) ngo °o"n n!
15



n=0 nt
XN _ 0
- = x-le (3.2.27)
® m
¥(8,0) = mgo q’m,O m!
1 ol m_ 4] m
= oI mgo [(xy) - ]&
xyg _ _E
e—xy-_l—e- (3.2.28)
From (3.2.26) one obtains by differentiation:
® ® gm n
: WE(E,T]) - le nZO n ‘Dm;n min!
x© -] mn
= £
ne ‘l’n(E:ﬂ) = m§=:0 ngl ng Qm,n ey and hence
© ) ém n
E U
+ m\:‘l mo o wr * nzl 0 0 AT - (3.2.29)

Substituting (3.2.25) into the first term on the right hand side of

(3.2.29) yields

-] o0 mn ] o mn © © mn
xyz Zm@_ 5-—’1-,,+xe§ Zn(b _ -g—TL'+Z m =i
mol nel m-l,n m!n! mel nel m,n-1 min! rel el m'n
‘e c o §mnn (3.2.30)

N % ;i



Teking the terms of (3.2.30) one at a time:

b © mn

xyz z m<bm-l,n 'IEITET

m=l nal

m+l n

[ ©0
=Xy mEO nél °m,n m! n!

mn

- T Y0, S - xyeu(e,0)
m n

XYE ot
= exyv(,n) — | =T

e © m n
x6 m_z__l nzl n0,n-1 min!
© 00 m n+l
= X6 mgl néo ®n,n il
-3 [ mn
=xom 3 Y 0 o ﬁv - x6n¥(0,7)
m=0 n=0

xn _ 0
= xonv(€,n) - xen(g—x—:‘i—)

© [ mn
z z m min!
m=1 n= e
© 0 m+l - n
-y T
m=0 n=l m. n.
- et ez)
17

(3.2.31)

(3.2.32)

(3.2.33)



oo -] mn
oI I o il
m=l n=l m:n
© o m n+l
=6 z Tyt
m=l n=0 m.n.

=18 Ggﬂ] - e> (3.2.34)

The second term on the right hand side of (3.2.29), after applying

(3.2.21) bvecomes

E (xy)"-1) "
- !
m=1 xy-1 n

.2 (5 {y_;_em -y rer
T oxy-l mz=l (m-1)! mél m-1)!

1 XyE

= 2 (xyee e | (3.2.35)

Similarly, the third term on the right hand side of (3.2.29), after

applying (3.2.20), becomes

;c-?T xne® - qel) (3.2.36)

Substituting (3.2.31) through (3.2.36) into (3.2.29) and

simplifying the resulting expression ylelds:;

£ [wg(g,n) - xw(e,n)] + 61 [vn(g,n) -xW(Em)] = (& + on)et™?
(3.2.37)

18
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We now seek a solution of (3.2.37) which satisfies the boundary condi-

tions (3.2.27) and (3.2.28),

Let  \UJ(E,m) = e 7 X0 y(e,m).

Then LJg (&n) = e-xyg - X0 'Vg(g:ﬂ) - xW(gﬂl)]

U,] (g,7) = XYt = XN ’vn(g,n) - xw(g,n)]

and (3.2.37) becomes

Uy (6 + o (6,0 = (¢ + eme 8OTD0eL) T (55 55

The boundary conditions become

-n(x-1)

Ulo,n) - 1_-_%___ (3.2.39)
1.e-t(xy-1)

U0 = ==5— . (3.2.40)

The Mellin transform of a function \J(g,n) with respect to 1

(¢ will be treated as a parameter) is defined to be
® s-1
U = [ o Uenan ere
)

8 1s a complex variable suitably restricted to insure convergence, if
the transform exists at all. Taking the Mellin transform of both sides

of (3.2.38) yields
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(o)

Simplifying, we obtain
ﬂ%@ﬁ)'%ﬂﬂﬁ)=g“wd)F@dy%@)+eﬁdr“ﬂ%“ﬂﬂ

and, multiplying by the integrating factor §-es'l gives

%[{“uuﬁﬂ =5”4e*“*”[ﬂ»n*mﬂ+eudr“”%wuﬂ

and hence,

13
'uuﬁ>=fsf

(-68-1 _-t(xy-1) [T(x.l)'S-r(s)w(x-l)'(.s*l)r'('éu)] ar
C

where C 1s a constant of integration which may be a function of 1.
Since the mathematics is simpler and 2 solution satisfying the boundary
conditions is obtained by taking C=0, 1let us do so; also, let us make

the change of variable t =

v ]

1 |
Ule,s) =L £708-1 o-8(xy-1)t [gt(x-l)'sr‘(s) + e(x-l)-(s+l)l"(s+l)] dt

Inverting, we obtain

U, = f

(o)

1 o [g(xy-l)t + n(x-l)tG] (g + ente-])dt.
(3.2.41)
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1l ]
Uo,m) = j e Nx-1)t7 g 6-150
(o]

= x—h (1-e"‘(x'l)) which checks with (3.2.39)

U (,0)

1
f e-g(xy'l)tg dt
(o]

- __l__ e'g(xy'l)tli
xy-1

1

xy_1(1-e'§("°"n) vhich checks with (3.2.40)

Using (3.2.41) we can now recover v(&,n)

1 0
v(g,m) = j bl )ty ] + [(1-x)67+ x] (o 0-1) o
(o]

0 © 1
=t 1 U [(l-XY)t+xy]m[(l-x)t6+x]n[§+9ﬂte-l]d%-li:;ﬁ (3.2.42)
m=0 n=0 [JoO in!

From this expression, the coefficient of

mn

e is seen to be
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0y, nl%¥) = mll (1=t + xyr"l [(l-x)te + x]ndt

+ né Ll [(l-xy)t + xy]m [(l-x)‘c,6 + x]n-lte'ldt

(3.2.43)
From the definition (3.2.19) of Om 0 (x,y) we observe that
24
min{r,m} Yo (x,y)
’ a 1 m,n' "’
Q(m + n-r, m-a, m, n)y = ) ——‘——r
a=max{0,r-n} ox x=0

Considering the first term on the right hand side of (3.2.43), and
applying Leibniz's rule for differentiation and interchanging the order

of differentiation and intergration,

r 1 -1
= i—r j [(l-xy)t + xy]m [(l-x)te + x]ndt

ox ) X=0
m jl %(r) ak[(l-xy)t + xy]m-1 ar_k[(l-x)te + x]n a
Tl Vit o o

X =
m 1 g: T\ k m-1-k 0 ,,r-k _0(n-r+k)
-z 3 (k/ (m-1), (yI2-61) 5™ () (016217 at
o] k=0

= -1) 1
- E (m k!krf_:r-k f (l-t)t(l-te)r-ktm_k-l + 6(n-r+k)dt yk

k=0 o

22



-n § [(m;l) ) [ L ey (TR + 6(amr) dt], x
0

k=0
(3.2.44)

Similarly, the second term on the right hand side of (3.2,43), when

differentiated, becomes

r 1
-1 k -k m-k-1 + 8(n-r+k k
né kf [(i) (:-k f (1-£)5(2-t%) 7 " (n )dt] v,
=0 o
(3.2.45)
Here, it is understood that (.:) =0 4if b > a. By combining (3.2.44)

and (3.2.45) and by uniqueness of power series, we find that

e = [ 32+ m (2) (22
J'l (1-£)°(1-¢%)T0gmeacL + onor Pat
[o]

Some manipulation then results in:

P, (a;m,n,r) = é;[m-aw(n-r-ba)] j (1-t)2(1-t )

r-a,m-a- -1+ 9(n-r+a2
(3.2.46)

3.3 Compliments and verifications: In this subsection we shall verify

that (3.2.46) has required properties of a bonifide probability dis-

tribution and satisfies the defining conditions (3.2.1) through (3.2.5)

Theorem 3.3.1: For r < m+n and max(0,r-n) < a < min{r,m}, Py(a;m,n,r)

as given in (3.2.46) 1is discrete probability mass function.

Proof:

Clearly Pe{a; m, n, r) > 0. The generating function for
min{r,m)

Pe[a; m, n, r)
a=max{0,r-n)

23



can be obtained by setting y =1 in (3.2,19)

1) m+§-l min{r,m) , y
o (x,1) = P.{a; m, n, r))x
m,n"" r=0 a=max[0, r-n © * (3.3.1)

- m jl [(1-x)t + x]m'l [(2-x)¢° + o] at
[o]

+ no fl [(l-x)t + x]m [(l-x)te + x]n-lte-ldt
(o]

(3.3.2)
by (3.2.43).

Integrating the first term on the right hand side of (3.3.2) by parts:

Let U= [(1-x)t® +x])%,  av = m{(1-x)t + x]" tat

then dU=n[(l-x)t9+x]n-le(l-x)te-ldt, v

Tl%—fy [(l-x)t + x]m

we obtain the expression

1 1 m o 171 o1
. - nejo [(l-x)t+x] [(l-x)t +x] t° Tat

ﬁ%ﬂ [(l-x)teﬂc]n [(l-x)*t.+x]m

wvhich, when substituted in (3.3.2) gives

l_xm+n m+n-1 r
Gm,n(x:l) = Iz = r§0 x (3.3.3)

Since (3.3.1) and (3.3.3) are identities in x, we have

1 a g T-8 m-a-1+9(n-r+a)
(:)(rr_’a)[m-aw(n-rw‘a)]f (1-t) (1-t7) ¢t at=1
° (3.3.4)

min{r,m)

a=max(0,r-n)

for r <m+ n, vhich completes the proof.

2k



——mmwmmmmmmmu---—

An integration by parts and some manipulations with the binomial
ccefficients if required to show that Peia; m, n, r} as given by
(3.2.46) satisfies the partial difference equation (3.2.1). An example
of the type of computations necessary to show that the boundary condi -

tions are satisfied is given below. The others require similar computa-

tions.

Pe(ai O, n, r)

l -
= (2)(:) [-a+9(n-r+e.)]j (;L_t.‘)&(l_te)r-!a.t_‘_-a.-‘lﬁ-e(n-r+e.)dt
°

(o} if a>0

=

1 4
(3) [6(n-r)] j; (-7 i a0

0 a>0

n!
={ Fmroz f (r*her) e

1 a=0

3.4 Moments: One can always write down an expression for the kth moment

as a finite sum of terms simply by using the moment definition. For

example, the first moment is, by defirition,
Ee(A; m n, r) =

r . 1 a g.T-8 m-a-1+9(n-r+a)
2 a(a)(r-a) [mfa+6(n-r+e)]'L (1-t) (1-t7) ¢ at,

a=0 (3.4.1)
25



This is not an attractive form and requires considerable computational
effort to obtain a numerical reesult for given values of m,n,r and 6.
A closed form of (3.4.1) would be desirable but unfortunately is not
obtainable. However, some rather interesting side results were obtained
as byproducts of attempts to simplify (3.4.1).

The first approach used was to condition Ee(A; m, n, r) on the

result X(1) of the first draw.
EG{A; m n, r) =E [EG[A; m, n, rIX(l))]

neé

+ E{A; m, n-1, r-1) T

m
=[1+E9[A, m-1, n, I‘-l]] m

or, simplifying,

(m + no) EG(A;m,n,r] =m EQ{A;m-l,r-l] + noE, {A;myn-1,r-1) + m,

(3.4.2)

Clearly, EO(A; m, n, r} must satisfy the boundary conditions
Ee(A; 0, n, r) =0 (3.4.3)
EGIA; m, O, ) =71, (3.4.4)

Define De(m + n-r, my, n) = EG{A; m, n, r)

The (3.4.2) through (3.4.4) become

(m+n9)D9(m+n-r,m,n) =mD9(m+n-r,m-l,n)+n9D6(m+n-r,m,n-l) +m

(3.4.5)

De(n-r,O,n) =0 (3.h.6)

De(m-r,m,o) =T (3.4.7)

m+n r 8

Define Qm,n(x) = rz‘l De(m+n-r,m,n)x . (3.4.8)
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Then 8, (x). =0 - (3:4.9)
- x "“‘mﬂa’fﬁg"m*l. (3.4.10)

Multiplying (3.4.8) by (m+n8) and using (3.4.5) gives

m+n , N L m
(m+n6)nm’n(x) = er mD (m+n-r,m-1,n)x" + rg noD, (m+n-r,m,n-1)x" + er mx

Replacing r by r+l and noting the first two terms are zero when r=0

glves nn
X -l

(m+n6) Qm,n(x) ='mx Qm-._l.,n('x) + nex -Qm,n-i(x)' *m

(3.4.11)

Now define Alg,n) = 2 Z Q §_n'_ . (3.4.12)

m,n m!n-

m=0 n=0
Then (3.4.9) and (3.4.10) become
a(o,n) =0 (3.4.13)
250 = § 9, &
. x E mxm+l- [m-:-l ]xm+l) gm
(x-1)°  me0 - '
g
2 (LI)E (x2§ -x$ -1+ eg(l-x)) (3.4.14)
X
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Differentiating A with respect to g and 1n and adding gives

[ mn
£ 4,(8,n) + nedn(g,n) = §; Z (mng) 8, (x) Jrbr
m n=0
[ © mn © - L n
= L Fomxa ()il 5 nea, () £0
n=o neo n'™’ minl 7 & &7 myn-1 min!
© o0 m+n mn
* Z Z nx (xx-l-l> mn! ° (3.4.15)
m=0 n=0
Taking the terms of the right hand side of (3.4.15) one at a time:
© ® m_n m-l '
LI L mxo,, T = b mzl ngo N T T L)
(3.4.16)
mn o eo m_n-1
mgo ngo nox Qo _p (%) ﬁ-.—"n— = 6x7 mgo L 2, n-1(%) ;5(;:‘—1)— = X07A(§,n)
(3.4.17)
P Iedm ST § E e o)
m=0 n=0 - mens XL mel n=o Thpehs X2
(3.4.18)

Substituting (3.4.16) through (3.4.18) into (3.4.15) and simplify-

ing we obtain
E(8, - x8) + on(a - xA) = i’:‘-i Q"(g”‘)-eg‘), (3.4.19)

et a(g,n) = <M y(e,n). Then (3.5.19), (3.4.13) and (3.4.14)become

3 vg(e,n) + envn(e,n) = i—’fi G- e‘“‘”“@ (3.4.20)

v(0,n) 0 (3.4.21)

(x 1) (§-x§ 1vet (3 "» (3.4.22)

28
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Let us apply the method of characteristics to solve (3.4.20):

at _4an | av .
LR T GRS (3.4.23)
x-1
The first and second members yleld 1 = clge,

The first and third members yield

6
v _x (1-x)(g+C. ¢ )) so that
aE  x-1 (("'e 1

3 6
V(E,m) = _i_fx_e(l-x)ﬂcl'r )d‘r

x-1
Q
Let t=§ , &dt = dt. Then
6
v(e,m) = _g_ - elmx)(et + e (3.4.24)

[e]

We see that the boundary conditions (3.4.21) and (3.4.22) are satisfied

since V(0,p) = O and

V(t,0) = %%_i (x _ Rﬁ [e(l-X)g_l]>

= = > (x2§ - xt + e(l'x)g-l)
(x-1)
Therefore

Aen) - (5'”1) ( f (1-x)(nt + Nt )dt)

== Zo Zo(x’“*“*l-j’ [(l-X)t+x]m[(1-x)t9]ndt 5-—]3-\-1-1
=0 n= o

min!

(3.4.25)
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mn
Which yields nm n(x) as the coefficient of éq-;?-,- :
4 olls

Q. (x) « X/ gon jl [(l-x)t+x]m-l[(l-x)te+x]ndt>
m,n x-1 o . (3.4.26)

To recover De(m +n-r, m n) we note

Ry
' - = 2 . 4,26
r De(m+n r,m,n) = <Qm,n(x»x=o From (3 )

o af 1 m-1 o g0 )
;; ém’n(ano =m ;? <-l—’_‘-}-c L ((L-t)x+t] [(1-t7)x+t°] dt o

r d'j (
o m JEO f [(L-t)xst] [(1 ©)xet®] at L (T
(3.&.27)
dr-J x 0 J=r
N —_— (X = (3.4.28)
o axtd (l' )x=0 (r-3): J<r

and

1 -1
[ijj j [(1-t)x+t ]m [(l-ta)x+t9 ]ndt]
ax ¢ x=0

1 k J-k
%(ﬂ)‘L [ﬁ [(1-t)xet] :x [(lt)x+t1]

k=0

x=0

1 |
) )J_. ) (a-1) (), j R TR LI L TRO
k=0 (o}

1l
{ 3 (ml'cl)(.jr-lk) f(l-t) (1-1-,9)k'Jtm‘l"k"'e(n'J+k)dt
k=0 o
(3.4.29)
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Substituting (3.4.28) and (3.4.29) into (3.4.27) gives:

-1 1k 3-k m-k-1+49(n-J+k
EG(A;m,n,r) -mrz { (mEl)(J'-’k) L (1-t) (l-te) 'l:?l (n +3.t
J=0 k=0
(3.4.29)

which is certainly no improvement over (3.k4.1),

Another approach 1s to recognize that

r o (x,y) '
EO{A} m, n, r] = %! :xr [ m’gy ] J
y= x=0

where omn is defined by (3.2.19). Using (3.2.43) we find

4

r.

50 N 1 -2
T [—méﬁ—(x—n] - E‘f—llj [(Lex)t + x] (%)t + x] x(1-t)at
y=1 °

1 -1 -1
+ 1;4?2] [(1-x)t +x]ln [(l-x)te+:x]r1 x(1-t)t9'lat
o

(3.4.30)

Denote the first term on the right hand side of (3.4.30) by h(x) and

apply Leibniz's rule:

1 -2
arhr(x) i} mjx:;l) Jf 5rr x [(1-x)t + x]m [(2-x)e® + x]n(l-t)dt
o x=0 o

- -2[ .
_ n(m-1) ’:;l L Z(E) ak ar [(1-x)t+>r gl-x).t9+ -(;1-1;)&150

r!

1l - -2
= n(m-1) j ::r [(l-x)t + x]]m [(1-x)te+.x]n(l-t)d{
()

=0
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- lr-l - ak . m-2ar-1-k n
S, [[ Z, 0 Sl 4T Gl L]

-1 1 k+l 6 r-k-1 m-2-k+9(n-r+k+l
= m(m-1) I‘Z (mig)(r-ﬁ-l) f (1-t) i (1-t )r tm (o )dt.
k=0 o

(3.1‘.31)
Similarly, the second term on the right hand side of (3.4.30),

when differentiated r times and x placed equal to zero gives

mn - 1 ktl 6 r-k-1 m-2-kid(n-r+k+l
9 rz (mil)(rr'ﬁ-‘]‘l) j (1-t) i (1-t )r tm (n-r+k+ )dt.
k=0 5

(3.4.32)

Combining (3.4.31) and (3.4.32) gives

-1
E (4m,n,7) = m r{ {(m-l)(miz)(r-ﬂ-l)
k=0

6 r-k-1 m-2-k+9(n-r+k+1)

Ly el }Jl k+l
no (k) (rokm1)b | (1-t)  (1-t) t dt.
° (3.4.33)

Writing (l-t)]Ml = (l-t)k - 1:.(1-‘['.)k and breaking up the integral in

(3.4.33) 1into two parts we obtain

Ee[A; m, n, r)

-1 ) 1 -1-k m-k-149(n-r+l-k)
:): k (m(®EL) (r-1-k)+ ne(ﬁ)(r’.‘ﬁk)}j (l-t)k(l-te)r b T
k=0 (o]

r-1 n 1 k 6 r-l-k m-k-1+9(n-r+l-k)

+ 5 O (1) ) (-t) (-t )t at

k=0 o
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= Ee(A3 m, n, r-l)

-1 1
. r{ (ml-{l)(r'il'k) I (l_t)k(l_te)r-l-ktm-k-l-i-e(n-ri-l-k)dt . (5.’4.3’4)
k=0 )

r
But, since A = ) X (J), we have
=1

EG{A; m, n, r} = Ee[A; m, n, r-1} + P(X(r) = 1) and hence, in (3.L.34),
we can identify the unconditional probability of drawing ar element from

M on the rth draw as

r-1 n 1
P(X(r)<l) =m § ) (e 1) j (1-t)K(1-£0)F-1-km k-149(n-r+l-k) o
k=0 ° (3.4.35)
which is a valuable result itself.
Equation (3.4.35) gives us insight into interpreting (3.4.29)

Replacing J by J-1 in (3.4.29) gives

]

r -1 : 1 21-k m-X-
gsmnr) = F TR G-10 [ a-ouytitsgrotsee-gasg
= = o -

r
¥ Px(3) =1)
=1

so that (3.4.29) simply states

r
Ee(Ai m, n, r) = Z E [x(3)].
B
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SECTION 4
ASYMPTOTIC RESULTS

4.1 When m and n are large compared to r.

Using (3.1.4)we shall obtain crude bounds on P,(A; m, n, r) which

e
converge to the same quantity as m and n go to infinity while
m/n =17 1is held fixed. We first prove a lemma concerning each term on

the right hand side of (3.1.4).
Lemma 4.1.1 For all k and J such that

1<k<r and 1535(3),9{2]1 implies

< <
n(k, x(g))'#en(k, x(g)) {-5 m(k,xJ) + On(k,xJ) {E} m(k,xl) + en(k,xl)_

v

Proof: Let 8 =1 + ¢, € >-1. PForall k and J such that

1<k<r, 1<3<(d)

m(k,xJ) + Gn(k,xJ) m(k,xj) + n(k,xJ) + en(k,xJ)

[

mtn-k+l + en(k,xJ) by (3.1.2).
By the definition of n(k,xd) and the ordering imposed on X(a) we have
n(k, x<£)) < n(k,xd) < n(k,xl) .

Multiplying this inequality through by € (the inequalities are

reversed if € < 0) and adding m+n-k+l to each term proves the lemma.
Iet w=m+nf and (d)m = d(d-1)...(d-m+1).

Using (3.1.2) and the definition of x, we see that

3



frreme v

-1 -1
;fr [m(k,x1)+9n(k,xl)] =[u(u-l).--(u-a)(u-awe)---(u-a-[r-a-lle)]

'_l

-1
= [(“)a (Eg-‘-‘)r_a e"a] (4.1.1)

and, using the definition of x(r)
a

r

-1
g [m(k,x(g)) + en(k,x(g))] =[p.(u-e)...(u-[r-a]e)(p-[r-a]e-l)...

-1
(u-[r—a]G-a+l)]

- [ (). (u-[r-ale) e7® ] (4.1.2)

Using lemma 4.1.1 and substituting (4.1.1) and (4.1.2) into (3.1.4) for

>
6 {<} 1 gives

(m)_ (n) < < (m) (n)
(r) ( " 7 ;:: {;} Pe[a,'m:n)r] {;} (:) 2 == o .
wnd) (n+ 57) (= = (m+[n-r+ale) (n+ 3) .
(4.1.3)

For 6 = 1, the bounds coincide and equal the correct central

hypergeometric probability.

Lemma 4.1.2

(am + b)
a _ a\@
lim m— c) where a,b and d are real, O 1is any

m —-»o0

positive integer and c # O.

Proof: The proof is immediate by writing:
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1im (¥ D)y gy (a+£)(!+%)(a+%3 ...(a+b'z*1)

= = ga ‘
m-» e zcm+d5a m-»eo (c+%)(° +§-}'—:)(c +-d—;1-2-)...(c +i-%+—l) (c)

Let 1 =%‘ in (4.1.3) and apply lemma 4.1.2 to both the upper

bound U and the lower bound L:

(m)_ (nm) a r-a
v= (£ & r-a (D () (T (k1)

([1478]m + [a-r16) ([n+ Flm)__

(m) (ﬂm) a r-a
L= (%) 8 r-a > (7)) (k=) () (4.1.5)
® ([1 + n0lm)([5 + nln - §) & owmen e
r-a

so that the bounds, and hence Pe(a; m, n, r), both approach a binomial
probability with parameters r and p = T+l_'q3 . Therefore, if r 1is
small with respect to m and n, one can use the properties of the
binomial distribution to investigate pertinent questions such as esti-
mation and moment problems. For example, the usual minimum variance
unbiased estimate of p in a binomial distribution can be used to

estimate 6 Dby

1 a
% = ﬁ = ;-5 implies 6 = %1 /my (4.1.6)

and the first two moments of the distribution Pe(A; m, n, r) are

= tE
M = m + ne (h’l'.?)
2 rmn?é
¢ = —
(m + nd)

For m=n = 20, table 4.1 shows the comparative values of the
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exact probabilities Peia; 20, 20, r} with the binomial approximstion

B(p, r) with p =T%? .

Teble 4.1
“‘ Py (a; 20,20,r) Bl )
r a
0
1 14599
31 2 2260 2002 0960
3 . 0333 .0370 .0080
o} .1088 .1317 3277
1 .3278 4268 .3292 4096
5 2 3534 2234 .3292 2048
3 L1704 .0523 L1646 .0512
N .0368 0055 o412 . 0064
5 .0028 .0002 .0041 .0003

4.2. When m, n, and r are lairge.

Let us now investigate the behavior of Pe (A; my n, r}] as given in

n=n

(3.2.46) as my, n and r approach infinity while the ratios =

and fl = p are held fixed.

Lemma 4.2.1 (Laplace's method)

Let h(t) be a twice continuously differentiable real function of the
real variable t on @ <t <P and let g(t) be continuous on
a<t<pB. Let h(t) have a unique maximum at t = ty @<t < B,

and g(to) £ 0. Then, for large m,

f (1) () tN'/ gt )e o) (4.2.1)

o
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Remark: @ If h(t) has a finite number of maxima, the integral can
be broken into a finite sum of integrals, each satisfying the unique
maximum requirement.

® 1 t, =B and h(t) 1ie well behaved at t =B, then the
right hand side of (4.2.1) must be halved.
Lemma 4.2.2 %

Let i=p>0, £=n >0 and t_ = [-l%‘?]—'ﬂ] . Then, for large m,

1l
f(l_t)a(l_te)r-atm-a-l + 9(n-r+a.)dt
0

1
r=— a r-a+l m-atf(n-r+a- =)
N% _2“? (l'to) (l'tg) s : .

Proof: Assume the parameters have been labeled so that r < n. Thus can
always be done without loss of generality and insures O < to <1l.

Rewriting the integral in the form

1 mn(t) Ly .8 a(6-1)-1
fg(t)e dt, where g(t) = (—‘—é) t
0 1-t

and h(t) = pén (1-te) + [1+6(n-p)]£n t, we note that h(t) is twice
continuously differentiable on (0,1) and g(t) is continuous on (0,1).

Furthermore, h'(t) = 0 has the unique solution
1

= 2.6
e pot
t = |00 and h"(t ) = - 2 <0 sothat t_ 1is the
o 1+60 0o t2(1+t6)2 o
(o} (o]

unique maximum of h(t) on (0,1). Lemma 4.2.1 therefore applies and,

after some simplification, the stated result is obtained.

B

r -
Lemma 4.2.3 For =P >0, =0 >0
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L 1 a -2
m 2 2
(1) (J~ < nc (nee)
(11)  (2)~ 2
r-a n-r+a+ % n-a+ %‘
¥2n (m-r+a) (r-a)
Proof: (1) By Stirling's formula
B
o oLom 1 P
au T )E T -
m-a a M(m_;é)m a
LB et 8 ()
T a! ‘m-a " n-a)
.l -
~ -al' m- (m-a )a 2
(11) (D) = et

r-a’ = (pm-a)!{[n-pJm+a)’

i

m-a
2 (pom-a) (P%') von([n-plm+a)

1

([n-o]m+a)

e

) (Kﬂ-p )m+a.)

[n-p jmta

(_om-8

o / (r-a)(n-r+a) ((n -p)mta

pm-a

‘M[n-p)mta

(o) (Rt (e

1l / n
~7—2: (r-a)@n--r+a) ‘n-r+a

n+3
B n
Vox n-r+at+ = r-a+ %
(n-r+a) (r-a)

n-r+a

)

a



Now, applying lemmas 4.2.2 and 4.2.3, we obtain the asymptotic expansion

2] 1
P.{a; m 0, r] ~ 1 |m-a+6[n-r+al} mn to 2
gr=r T a! 8 n-r+a r(r-a)(m~a)(n-r+a)

(4.2.2)
6\ 2 9 r+l 6\ P
[(m-8)(r-a)(1-t )t \ fo-r+a)(1-t’) nt m
N o’ o 0 o] t
) \ n-r+a) (1-t0)t (r-a)t) ariep °
A=TTRIR =TT r-alt, J

4.3, Whenm, n, r and a are large:
Using lemma 4.2.1 we now prove
Lemms 4.3.1.

r n a
Let m-P > 0, =" > o, n° @ > o. Then there exists a unique

solution t, € (0,1) of the equation
. 6+1 0
(1 n)t7 " - (16m-Q)t” - (1+6[n-p+a])t+l-o+6[n-p+a) = O

and for large m,

1
J[(l_t)a(l_te)r-atm-a-l+9(n-r+a.)dt
0

1
o 2

~ (1-t,)

\atl(l-t9)2+(r-a)Geti(l-tl)a 1

a+l r-si:l, m-a+0(n-r+a) (4.3.1)

1

(1-52)

Proof: Rewriting the integral in the form

1
jrg(t)emh(t)dt vhere g(t) =t} and h(t) = fn(1-t)%(1-£8)P-%l-+0(n-ptal,
0

we note that g(t) is continuous in (0,1) and h(t) is twice continuosly

differentiable. Furthermore, h(o) = h(l) = - » 8o that there exists
4o |



at least one relative maximum of h(t) in (0,1). Let t, be any eolution
in (0,1) of

6-1

h'(t) = u Q - (p-a)et

, 1o#[n-pa] _
1-t 1-t° °

t

Simplifying, let t., be any solution of

1

e+1

(1+6m)t” ~ - (l+6n-a)t6 - (146[n-p+a]) t+l-o+8[n-p+x] = 0, (4.3.2)

in (0,1). To show that there is only one such solution, it suffices to
show that h"(tl) < 0 since a continuously differentiable furction

cannot have two relative maxima without a relative minimum separating

them.
6-2 6
h"(t) = - a _ (p-a)ot  (6-1+t")  1-0+9(n-ptar)
(l-t)2 (1_1;6)2 t2
2,6-2 0-1
(5] = o (p-a)6%t; (p-a)6t) 1-owe(n-psa) | L
U7 e (19)? 149 t) %)
1 1 1
(p-0t)6°t8 2

o 1, o
(l-tl)2 (1-ti)2 (1-%,)t)

]

(p-a)ezti

- - <
2 8.2.2
(1-t1) ty (l-tl) t]

xQ

0O since p-a2>0

and 0<+t, <1. Hence, t, is the unique maximum of h(t). Applying

lemma 4.2.1 then proves the lemma.
Using Stirling's formula we obtain
(m) ~ m ( m
a 2ra(m-a) ‘m-a

41
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SN o
and (r?a) ~ J,zﬂfr-a?(n-r+a) (n-:+a) (nr-aa) . (b.3.4)
Then, using (4.3.1), (4.3.3) and (4.3.4) we obtain
2 2, .6,2 i
mn(m-a+6[n-r+a)) (l-tl) (l-tl) 2
Pb(a; m, n, r}~ 55 ) 5
2na(mra)(r-a)(n-r+a)(atl[l-t1] +[r-ale tl[l-tl] )

(4.3.5)

- 6
( (m'&)(l~tl))a((n-ﬁa)(l-ti))r a(mtl n (ntl )n
X at 2] —_— n-r+a
1 (r-a)tl

Tables 4.3.1 and 4.3.2 furnish examples of the accuracy of the

asymptotic expansion (4.3.5) for moderate and large values of the

parameters, respectively.
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Table 4.3.1

m=n= 20,

r =1k

il <
= w b - o
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Table 4.3.2

m=9, n=120, r=75
= .5 8 =2
a8 a
Exact |Approx. A Exact | Approx A

0 0 0 o1 0 0
29 | o 0 0 10 0 0 0
30 .0001 .0001 0 1 .0001 .0001 0
31 . 0002 .0002 0 12 .0003 . 0003 0
32 .0005 .0005 0 13 . 0008 .0008 0
33 .0012 .0012 0 1L .0021 .0021 0
34 .0028 .0028 0 15 .0049 . 0049 0
35 .0059 .0059 0 16 .0105 0105 0
36 .0014 .0014 0 17 .0199 .0200 . 0001
37 .0202 .0203 .0001 18 L0341 L0343 .0002
38 .0332 .0333 | .0001 19 .0530 | .0533 .0003
39 .0501 .0503 .0002 20 LOT4T .0751 . 0004
40 .0698 .0700 .0002 21 .0958 .0963 .0005
L1 .0894 .0898 . 000k 22 1119 1124 . 0005
42 .1056 .1060 . 0004 23 1193 1198 .0005
43 L1147 1152 . 0005 2 1162 1168 . 0006
N .1146 .1150 . 0004 25 1037 L1042 . 0005
45 .1052 .1056 .0004 26 .0848 .0852 . 000k
46 .0887 .0891 . 0004 27 . 0637 L0640 .0003
L7 .0686 .0689 .0003 28 L0439 LOh41 .0002
43 L0486 .0489 .0003 29 0278 0279 .0001
49 .0316 L0317 .0001 30 .0162 .0163 .0001
50 .0187 .0188 .0001 31 .0087 .0087 0
51 0102 .0102 0 32 L0043 L0043 0
52 .0050 .0050 0 33 .0020 .0020 0
53 .0023 .0023 0 34 . 0008 . 0008 0
54 .0009 .0009 0 35 .0003 .0003 0
55 .0003 .0003 0 36 . 0001 .0001 0
56 .0001 .0001 0 37 0 0 0
A N O s s
75 0 0 0 75 0 0 0

Ll
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SECTION 5
EXAMPLES

5.1 Example 1: A Genetics Problem

Let us analyze the data in table 2.2. Using the normal approximation to
the central hypergeometric distribution with parameters m = 95, n = 120,
and r =75, Fisher's exact test requires rejection of the hypothesis
of unbiased selection at the 5% (nominal) level if, and only if,

1
m | 5y _rmn(m+n-r)
m+n .025 (ln'*'n)e(m"'n-l)

Ja -

wvhere K 025 = 1.96 1is the 97.5 percentile of the unit normal distri-:
bution. For the values appearing in table 2.2 we find la - %E; =7,9
and 1
rmn(m+n-r) 2
K 025 5 = 6.8
) (m+n)“ (m+n-1)
so that the null hypothesis is rejected. If we define
40
£(8) = 2: pe(a; 95, 120, 75), we can display the sensitivity of the above
a=27 '

test in the form of an operating characteristic curve. For example,
referring to Figure 5.1.1, we see the probability of accepting the
hypothesis of randomness when indeed '"nature" is "twice as hard" on the

heterozygotic rabbits (i.e., 6 = 2) is 0.17.

hs
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Figure .».1.1.

5.2 Example 2: A Hypothetical Problem and Associated Operating

Characteristic Curves.

Suppose a lot of transistors is to be divided among two purchasers. The

lot is dichotomized by some quality criterion and let us assume there
46
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are m high quality items and n other items of tolerable quality.
Purchaser G, who has contracted for r items, susects the supplier
of favoring purchaser H with respectto the distribution of the m
high quality items. He therefore decides to test the hypothesis that the
lot has been divided in a random manner (definition 1.1) against the
one-sided alternative that the supplier is biased (in the sense of
definition 2.1) in favor of purchaser H. Fisher's exact test is
appropriate and the number of high quality items received by purchaser

G has a noncentral hypergeometric distribution with parameters m, n,
and r. In terms if the noncentrality parameter 6, purchaser G

wishes to test

H, : 6 >1

let A be the number of high quality items received by purchaser G in
a shipment of r items. Ho is then rejected if, and only if, A < Ao
where Ao depends on m, n, r and the significance level «&. Figures
5.2.1 - 5.2.3 show operating characteristics for m= n = 10 (a = .10),
m=n=12 (&= .11) and m=n = 20 (@~ .05). The curves are indexed

by various values or r and the required Ao.

5.3 The Noncentral Hypergeometric Distribution and a Class of Urn Problems.

In this subsection we shall consider a class of urn sampling problems
which lead to the noncentral hypergeometric distribution. Suppose an urn
contains m type 1 chips and n type 2 chips. A chip is drawn at
random and kept with probability pi if it 1s type i, 1 = 1,2. With
probability 1 - Py the drawn chip is returned to the urn and a second

chip is then taken at random. This process 1s repeated until a chip is
47
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retained. Let X and Y be random variables defined by

X =1 if the first drewnis a type 1 chip

Y =1 if the chip retained is a type i chip.

m =
( men 1 i
Clearly P(X = 1) = ¢ -n-l-:}; i=2
0 otherwise

\

and P{Y=1} is the probability that a type 1 chip is drawn and retained

before a type 2 chip 1s drawn and retained. Hence,

P{Y=1} = E[P{Y=1|X)]
= P{Y=1|X=1)P(X=1) + P{Y=1|X=2)P(X=2)
m I
= [py + (1-p))P(Y=1]] == + [(1-p,)P(¥=1])] ==
Solving, we find P(Y=1) = —= and observe that the
m+(==)n
P &
sampling mechanism has bias 6 = E? in the sense of definition 2.1.
1

Therefore, if one continues sampling in manner described above until

r chips have been retained, the number A of type 1 chips in the sample

has a noncentral hypergeometric distribution with parameters m, n, and

r and noncentrality depends only on the ratio of Py to p, 80 that

the distribution of A is unchanged if, for example, P1'2' Py and

type 1 chips are kept with probability 1 while type 2 chips are retained
Po

*
with probability p = 5—.
1
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